Кинематика.

Механическим движением называется изменение положения тела в пространстве относительно других тел.

Траектория – линия, вдоль которой движется тело.

Путь – это расстояние, измеренное вдоль траектории.

Перемещение — направленный отрезок, соединяющий начальное и конечное положение тела.

Равномерным движением называется такое движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения.

Уравнение скорости $v = \frac{s}{t}$; уравнение перемещения S = vt;

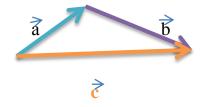
уравнение движения $\mathbf{x} = \mathbf{x_0} + \mathbf{vt}$, где \mathbf{x} – координата, $\mathbf{x_0}$ – начальная координата.

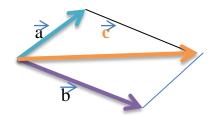
Равноускоренное движение — это такое движение, при котором скорость тела за любые равные промежутки времени изменяется на одну и ту же величину.

Ускорение — изменение скорости за единицу времени. $\mathbf{a} = \frac{v - v_0}{t}$

Для равноускоренного движения уравнение скорости $\mathbf{v} = \mathbf{v_0} + \mathbf{at}$, где $\mathbf{v_0}$ начальная скорость; уравнение перемещения $\mathbf{S} = \mathbf{v_0}\mathbf{t} + \mathbf{at}$; уравнение движения $\mathbf{x} = \mathbf{x_0} + \mathbf{v_0}\mathbf{t} + \frac{at^2}{2}$

Свободное падение — движение тела в безвоздушном пространстве. Это движение равноускоренное с ускорением 9.8 m/c^2 (ускорение свободного падения).


По окружности тело движется с центростремительным ускорением $\mathbf{a} = \frac{v^2}{R}$, скорость направлена по касательной к окружности.


Динамика.

Масса – мера инертности тела. $m = \rho V$, где ρ - **плотность** (по таблице), V – объем.

Сила – причина изменения скорости тела или деформации. Величина векторная. Сложение сил производится по правилу векторов.

- 1. Если силы параллельны и направлены в одну сторону равнодействующая равна их сумме.
- 2. Если силы параллельны и направлены в противоположные стороны равнодействующая равна их разности и направлена в сторону большей силы.
- 3. Если силы направлены под углом друг к другу то равнодействующая определяется по правилу треугольника или правилу параллелограмма.

с – равнодействующая сила.

Первый закон Ньютона. Существуют такие системы отсчета относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела. $\sum \vec{F} = 0$

Второй закон Ньютона. Ускорение тела прямо пропорционально равнодействующей силе и обратно пропорционально массе этого тела. $\overrightarrow{a} = \frac{\sum \overrightarrow{F}}{m}$

Третий закон Ньютона. Два тела действуют друг на друга с силами равными по величине и противоположными по направлению. $\overrightarrow{F}_1 = \overrightarrow{F}_2$

Сила трения вычисляется по формуле $\mathbf{F} = \mu \mathbf{N}$, где \mathbf{N} – сила реакции опоры, на горизонтальной опоре она равна mg (g – ускорение свободного падения).

Сила упругости возникает при деформации и стремится вернуть тела в первоначальное состояние $\mathbf{F}_{ynp} = \mathbf{k}\mathbf{x}$, где \mathbf{k} – коэффициент упругости (жесткость), \mathbf{x} – удлинение.

Закон всемирного тяготения. Сила, с которой два тела притягиваются друг к другу прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. $\mathbf{F} = \mathbf{G} \, \frac{m_1 \, m_2}{R^2}$, где \mathbf{G} – гравитационная постоянная (по таблице), \mathbf{R} – расстояние между центрами тел.

Сила тяжести – сила с которой тело притягивается к Земле. $\mathbf{F}_{\text{тяж}} = \mathbf{mg}$, где \mathbf{g} – ускорение свободного падения.